
NASA/TM-2009-215764

Baseline Assessment and Prioritization
Framework for IVHM Integrity Assurance
Enabling Capabilities

Eric G. Cooper and Benedetto L. Di Vito
Langley Research Center, Hampton, Virginia

Stephen A. Jacklin
Ames Research Center, Moffett Field, California

Paul S. Miner
Langley Research Center, Hampton, Virginia

June 2009

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk
at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2009-215764

Baseline Assessment and Prioritization
Framework for IVHM Integrity Assurance
Enabling Capabilities

Eric G. Cooper and Benedetto L. Di Vito
Langley Research Center, Hampton, Virginia

Stephen A. Jacklin
Ames Research Center, Moffett Field, California

Paul S. Miner
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2009

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Baseline Assessment and Prioritization Framework for IVHM Integrity
Assurance Enabling Capabilities

Eric Cooper, Ben Di Vito, Stephen Jacklin, and Paul Miner

Abstract - Fundamental to vehicle health management is the deployment of
systems incorporating advanced technologies for predicting and detecting
anomalous conditions in highly complex and integrated environments.
Integrated structural integrity health monitoring, statistical algorithms for
detection, estimation, prediction, and fusion, and diagnosis supporting adaptive
control are examples of advanced technologies that present considerable
verification and validation challenges. These systems necessitate interactions
between physical and software-based systems that are highly networked with
sensing and actuation subsystems, and incorporate technologies that are, in
many respects, different from those employed in civil aviation today. A
formidable barrier to deploying these advanced technologies in civil aviation is
the lack of enabling verification and validation tools, methods, and
technologies. The development of new verification and validation capabilities
will not only enable the fielding of advanced vehicle health management
systems, but will also provide new assurance capabilities for verification and
validation of current generation aviation software which has been implicated in
anomalous in-flight behavior. This paper describes the research focused on
enabling capabilities for verification and validation underway within NASA’s
Integrated Vehicle Health Management project, discusses the state of the art of
these capabilities, and includes a framework for prioritizing activities.

Introduction

NASA’s Integrated Vehicle Health Management project (IVHM) [1] is incorporating
advanced technology for assessing vehicle health at the system and subsystem level. For
example, airframe health management will perform in-flight diagnosis and assessment
through the integration of sensors, sensory materials, and advanced algorithms for
reconstructing damage fields and estimating structural durability and remaining useful
life. Many of these algorithms will incorporate advanced information processing
technologies including neural networks, expert systems, fuzzy logic systems, pattern
recognition, signal processing for spectral analysis and feature extraction, and statistical
algorithms for detection, estimation, prediction, and fusion [2]. Propulsion health
management systems will incorporate sensor suites and advanced fault diagnosis and
prognosis information processing technologies that will assess remaining useful life for
use by digital engine controllers and maintenance crews. Aircraft systems health
management will utilize advanced information processing technologies for detecting and
classifying fault conditions, estimating remaining useful life, developing Bayesian sensor
fusion tools, and investigating data-driven and statistical life estimation models. A
commonality across many of these health management approaches is the application of
large, complex software systems that use algorithms that are dynamic and non-
deterministic in nature. Fielded systems employing such algorithms will, in certain cases,

1 of 17

learn and change over time. This class of software presents a certification challenge that
is not addressed by current civil aviation airborne software standards such as DO-178B
[3, 4]. Moreover many of these health management capabilities will be used in flight or
mission-critical functions such as adaptive control and condition-based maintenance
whereby routine scheduled-based maintenance inspections and procedures are replaced
by on-board automated health assessment systems. The increased reliance on such
advanced algorithms in flight or mission-critical applications poses significant
verification and validation challenges.

NASA’s IVHM project is addressing these challenges by focusing on the investigation,
development, and demonstration of tools, techniques, and methodologies that will
provide enabling capabilities for assuring design and processing integrity of flight and
mission-critical systems. Research is underway in compositional verification, hybrid
systems analysis, and a new IVHM concept referred to as software health management.
Compositional verification embodies a suite of techniques and approaches that provide
strong guarantees that the verification of a system or sub-system can be efficiently
accomplished by taking advantage of the verification of individual components.
Software health management seeks to develop the tools and techniques needed to enable
the detection, diagnosis, prognosis, and mitigation of hazards due to software faults.
Hybrid systems analysis extends model checking, theorem proving, and static analysis
tools with additional capability for formal analysis of systems comprised of both
continuous and discrete behavior.

Finally, it is certainly beyond the scope of NASA’s IVHM project to address all of the
anticipated verification and validation challenges necessary for deploying advanced
IVHM technologies. We propose a framework for prioritizing research activities that
takes into account relevance to IVHM technology, relevance to system-level
dependability cases, and relevance to broader aviation safety verification and validation
needs. The contribution of current research efforts relative to this framework is
discussed.

Compositional Verification

The principle behind compositional verification is to use a divide-and-conquer strategy to
explore the state space of a large model of an aircraft or aircraft component. Models may
be of the form of finite state machines, formal logic representations, or mathematical
equations describing the behavior of the system in different modes of operation. Using
the compositional verification approach, large and complex system-level models are
decomposed into a set of smaller models, which can be verified separately. The complete
model is then verified by checking that the assumptions about the environment (i.e., the
other small models) hold at the system level.

An advantage of compositional verification is that individual models can be verified
using different techniques. In some cases, it may be possible to use model-checking
techniques for discrete finite-state machines. Hybrid model-checking techniques can be

2 of 17

used on IVHM models with discrete and continuous components (e.g., to describe the
different modes of a complex control system).

Component A	 j	 Component B

C 1 	A C2 ? P
2

P	 C 1 	C2?

	

C 1 A	 C2 	?P

1

Figure 1: The verification that a property (P) holds for a system can be done through
compositional verification by testing that the property holds for (verified) individual
system components under assumptions (A) made about the state of the other
components.

State-of-the-art in Compositional Verification
Compositional verification offers a means to implement formal analysis tools on
industrial size systems that ordinarily would be mathematically intractable using
monolithic approaches. Scalability of formal methods to handle large systems is based
on a “divide-and-conquer” approach that breaks up the verification of a large system into
smaller tasks that involve the verification of its components. Of course, the verification
of the smaller pieces is not useful unless there is a means to also verify the correct
interaction of the components. This problem is addressed through the application of
assume-guarantee reasoning [5, 6]. This technique uses assumptions when checking
individual components of a system that essentially encode the expectations that each
component has for the rest the system in order to operate correctly.

Derivation of the correct assumptions is a non-trivial manual process and this problem
can limit the scope of the compositional verification method. Over the last few years, the
Reliable System Engineering group at Ames Research Center has developed a collection
of techniques and a supporting toolset for performing assume-guarantee reasoning of
software in an automated fashion, which significantly increases the impact of assume-
guarantee reasoning in practice. These methods are applicable both at the level of design
models, and at the level of actual source code [7-11].

The techniques for compositional verification have been applied to the design and
implementation of the Executive of the Ames K9 Mars Rover and to verify safety
properties of OpenSSL, an Open Source toolkit implementing the Secure Sockets Layer
(SSL v2/v3) and Transport Layer Security (TLS v1) protocols (www.openssl.com). In
each case, more than an order of magnitude reduction in the state space was achieved
using compositional verification analysis. Further research is needed to examine the
expansion of this approach to industrial size IVHM applications, but so far the results
look very promising.

3 of 17

Compositional Verification and Adverse Events
An IVHM diagnosis system can be as simple as checking that the value of a physical
sensor is in nominal range or as complicated as feeding physical and virtual sensor
information to various diagnosis engines and somehow fusing the results in a coherent
diagnosis. The current trend suggests that diagnosis engines will become increasingly
sophisticated, incorporating advanced technologies such as model-based diagnosis or
neural networks. The trend is to keep them quite modular so that a new promising
technique can be added as the system changes. Compositional verification is very well
suited to perform verification of modularly designed software systems (as explained
previously above).

Compositional Verification Baseline Datasets
Although no data has been created by this research effort thus far under NASA’s IVHM
project, past research has indicated at least an order of magnitude reduction in the state
space using compositional verification on problems of moderate size. Using design
assumptions for model checking the K9 Rover code with the JavaPathfinder model
checker, a ten-fold state space reduction was achieved as compared to the standard
monolithic approach summarized in table 1. Equally significant reductions in memory
usage and analysis time were realized at the same time.

Table 1: State-space reduction using model checking design assumptions on NASA K9 Rover.

Compositional verification methods have also been studied on the Magic model extractor
to verify various safety properties of about 74,000 lines of C code. These methods
achieved two orders of magnitude space reduction compared to Magic’s non-
compositional analysis [12].

Compositional Verification Required Performance Level
Demonstration that the level of performance of the compositional verification
methodology and tools are acceptable first requires the selection of a compelling example
and to use it to quantify the scalability of the approach in verifying and validating
complex aerospace systems. Suitable examples could include the ADAPT testbed
(Power System for Avionics) developed by the IVHM teams at NASA Ames and the
DAME framework (Drill Robotic platform) also developed at Ames. Both projects
feature fault management systems integrating several types of fault diagnosis engines.
Moreover, their modular approach to software health management illustrates the need for
a compositional framework, which provides assurance that the composition of the
solutions to smaller problems satisfies key system properties.

4 of 17

However, the combination of models often results in an explosion in the number of states
that need to be explored during the verification process. This is known as the state space
explosion problem. The first look at compositional verification performance will consist
of evaluating the size (in number of states) of a behavioral model for a complex system
and show that it can be efficiently reduced using the method of assume-guarantee
reasoning mentioned above while maintaining the full diagnostic range of the complete
model. Demonstrating that the method can effectively reduce the number of states in a
complex (i.e., otherwise unverifiable) model is an important metric that can be used to
characterize the scalability of the method. Other metrics might be the degree of
interrelationships between models and the range of environmental (input) variables that
can be handled. Ultimately, it must be demonstrated that a compositional framework can
be created for a complex IVHM model that allows formal tools (e.g., model checkers) to
be effectively used to verify the complete system in a relatively short amount of time.
Hence, gains in terms of reducing state space size and analysis time are important metrics
for assessing improvement in verification performance. Additionally, heuristic
evaluation of how hard it is to generate environment assumptions (manually vs.
automatically) will also be important to assess, as well as to characterize what properties
can be addressed with the compositional framework.

Software Health Management

Software Health Management is a new research area aimed at developing tools and
techniques that enable the detection, diagnosis, prognosis, and mitigation of errors and
related adverse events caused or contributed to by software systems in aircraft. While
software health management bears many similarities to health management of physical
systems, there are important differences that must be taken into consideration. The most
important consideration is that all software faults are design errors -- software does not
fail or degrade in the physical sense. However, because aircraft software is inherently
coupled with physical systems, many faults in aircraft software are triggered by
interactions with unanticipated physical phenomena such as failed or degraded sensors,
unforeseen system modes, unexpected user operation, and erroneous environmental
assumptions. Thus, software health can only be assessed in the context of the larger
system in which the software is embedded. Unfortunately, there is little reliable data
concerning software failure. Specifically in [13] p. 39:

The lack of systematic reporting of significant software failures is a
serious problem that hinders evaluation of the risks and costs of software
failure and measurement of the effectiveness of new policies or
interventions.

This suggests an inherent difficulty in addressing detection and diagnosis of software
faults. Furthermore, Avizienis, et al [14] observes that certain software faults are
“recognized as faults only after [...] a failure has ensued.” It is possible that the first
indication of a software fault is catastrophic system failure. A canonical example is the
first flight failure of the Ariane 5 [15], which stemmed from sequence of seemingly
reasonable design decisions. This highlights another observation of [13] p. 40 that “ by

5 of 17

far the largest class of problems arises from errors made in the eliciting, recording, and
analysis of requirements.”

Stimul	 High Confidence	 Response
Software-Intensive

System

Observed (sensed)	 Mitigation	 Observed
Environment	 Behavior

Environmental	 Property Monitors Derived from 	 Domain
Assumptions	 System Dependability Case	 Assumptions

Figure 2: Notional Framework for Software Health Management

A central recommendation of the National Academies [13] is that dependable software
systems should be developed with explicit claims and evidence to substantiate those
claims, augmented with expertise in developing that class of systems. In light of these
recommendations, research will be focused on developing a framework for (software)
health management that involves:

• Explicit claims of system (and subsystem) requirements including assumptions
about the application domain and environment in which the system is to operate;

• Evidence that software satisfies these explicit claims under the stated domain
assumptions;

• Architectural principles, enforced by hardware mechanisms, that ensure that
software behavior dependencies are traceable; and

• Mechanisms for correctly composing software systems from trusted components
within the constraints imposed by the architectural principles.

To realize this framework, IVHM is exploring software health management in the context
of system level dependability cases (Figure 2). Dependability cases are a mechanism
recommended by Jackson et al [13] for managing the explicit claims and evidence in
support of system dependability claims. Dependability cases are derived from safety
cases [16], with a safety case broadly defined as [17]:

“A documented body of evidence that provides a convincing and valid argument
that a system is adequately safe for a given application in a given environment”
that should

• make an explicit set of claims about the system
• provide a systematic structure for marshalling the evidence
• provide a set of safety arguments that link the claims to the evidence

6 of 17

• make clear the assumptions and judgments underlying the arguments
• provide for different viewpoints and levels of detail

Bishop [17] further states that a safety case should consist of the following elements: a
claim about a property of the system or some subsystem; evidence which is used as the
basis of the safety argument; an argument linking the evidence to the claim, and an
inference mechanism that provides the transformational rules for the argument.

A definition of dependability may be found in [18]:

Dependability of a computing system is the ability to deliver service that can
justifiably be trusted. The service delivered by a system is its behavior as it is
perceived by its user(s); a user is another system (physical, human) that interacts
with the former at the service interface.

A dependability case is formed from the evidence presented to justify an explicit
dependability claim that makes clear which properties in the real world the system is
intended to establish [13], and is the mechanism recommended for managing the explicit
claims and evidence in support of system dependability claims summarized as:

Explicit claims – properties to be exhibited, assumptions about the environment upon
which the claims are contingent, and the level of dependability claimed,

Evidence – substantiate the dependability claim in the form of a dependability case
arguing that the required properties follow from the combination of the properties of
the system itself (the implementation) along with the environmental assumptions,
typically containing results from testing, analysis, and development processes

The central idea behind our approach to software health management is that any observed
(sub) system behavior that is inconsistent with any explicit (sub) claim in a dependability
case is evidence that either the system or its associated dependability case is flawed. In
either case, there is reason to doubt the dependability of the system. Initial tasks will
focus on detection and mitigation techniques, with the anticipation that more robust
detection capabilities will lay a foundation for future investigations into diagnosis and

State-of-the-Art in Software Health Management
There are examples in the literature that can be considered software health management
techniques. Sha [19] outlines an architectural mitigation strategy based on run-time
monitors coupled with simple, safe, but otherwise sub-optimal alternative solutions. The
central idea is that it is easier to establish the safety of the monitors and the simple
solution than the complex primary system. Monitoring of system requirements
specifications during program execution is described in [20, 21]. Goldberg [22]
advocates adapting ARINC 653 Health Monitoring mechanisms to support monitoring of
software using formal models of expected behavior. Castelli et al [23] documents a
proactive approach to a class of aging software faults. In this context, aging refers to run-

7 of 17

time degradation of software integrity due to resource exhaustion, data corruption, or
accumulation of numerical errors. The strategy outlined is centered on periodically
refreshing or restoring the state to eliminate the deleterious effects. This is a reasonable
strategy for systems with long periods of continuous operation, and is worth considering
for ground systems. However, for aircraft software systems, the flight duration is rarely
more than ten hours. Airborne systems are already periodically restored to a known good
state prior to every flight.

However, airborne systems may suffer from another form of software aging. Parnas [24]
suggests two contributing factors for software aging: (1) not modifying software in
response to evolving needs, and (2) modifying software in response to evolving needs.
While there are mechanisms in place to manage changes to fielded software systems, this
is an area with potential for either introducing new or unmasking existing software
defects.

Baseline Datasets for Software Health Management
Another objective is to gain a better understanding of relevant software failure
mechanisms for aircraft systems. There exist taxonomies of faults [14, 25]. We will
determine which classification scheme is appropriate for aircraft systems. Nikora [26] is
currently analyzing historical software fault data (using the classification suggested in
[25]) from several robotic space exploration missions. There are currently several studies
underway exploring various concepts and strategies for software health management.
Unfortunately, the initial reports from these efforts funded by the IVHM project were not
available in time for this baseline assessment.

Software Health Management Relevance to Aviation Safety
Although aviation software is subject to rigorous verification and validation, software-
related issues have been implicated in some accidents and near misses [13]. Furthermore,
aerospace software size and system complexity are expected to dramatically increase, as
noted in [27]: “Estimates on source lines of code for systems beyond the current
generation of developing systems are several orders of magnitude higher – and will likely
exceed one billion lines of code”. This increase in software size and system complexity
will undoubtedly include the fielding of systems incorporating new software-based
technologies for detection, diagnosis, prognosis, and mitigation of adverse events.
Software health management seeks to address software-related issues by identifying
inconsistencies between observed behavior and the explicit claims in the dependability
case.

Of course, this also highlights a need to manage the interplay between the compositional
verification strategies and software health management. The central strategy for
compositional verification is assume-guarantee reasoning. The software health
management philosophy is centered on the systems response to violations of assumptions.
This leads to the question of how to manage compositional verification in the presence of
assumption violations. Rushby [28] has previously explored this issue. He outlines a
collection of key properties necessary to support modular certification. In addition to
assume-guarantee reasoning, he highlights the necessity of an architecturally enforced

8 of 17

partitioning mechanism to ensure that composed components can only interact through
their defined interfaces (even in the presence of some failure mechanism). In addition,
he recognizes that assume-guarantee reasoning introduces circular dependencies that
might lead to cascading failures, should some of the component assumptions be violated.
His report outlines some strategies for resolving this difficulty, but additional
investigations are warranted.

Hybrid Systems Analysis

Model-based Integrated Vehicle Health Management (IVHM) systems perform fault
detection and diagnosis by monitoring a physical system and matching observations with
a model of that system. In traditional state-transition models, states of a system change in
discrete time steps. In continuous dynamical systems, states evolve continuously. Hybrid
systems combine these two notions. They include both real-valued and discrete state
variables, and their description involves a combination of differential equations and
discrete state transitions. The hybrid systems formalism is a framework for modeling a
large class of systems in which digital components or controllers interact with physical
devices. Validation of models and verification of algorithms using formal, analytical
techniques provide the rigor needed for dependable operation in critical subsystems.

This section heavily draws from material by SRI International, led by principal
investigator John Rushby under a NASA cooperative agreement. It focuses primarily on
the specific technique of hybrid abstraction. NASA’s IVHM project intends to explore
other aspects of hybrid systems analysis in the future.

Hybrid Systems Analysis State-of-the-art
Formal verification of hybrid systems poses theoretical and practical challenges. It is
known that checking reachability properties for very simple classes of hybrid systems is
undecidable. Even when semi-decision algorithms exist, hybrid models of real systems
are too large and too complicated to be analyzed with such techniques. The most
successful approaches to automate the verification of hybrid systems rely on abstraction.

In general, the goal of abstraction is to transform a complex system into a reduced form
that is accessible to simpler analysis tools yet retains sufficient detail to establish relevant
properties. Hybrid Abstraction is a new static analysis method [29 - 31] developed by
Ashish Tiwari of SRI International that allows the principled construction of sound,
finite-state abstractions of hybrid systems, while preserving sufficient properties for
analysis (in the context of this paper we use “hybrid abstraction” to refer to this specific
SRI technology). In Tiwari's framework, continuous dynamics are expressed using
polynomial expressions, that is, the derivative with respect to time of a continuous state
variable x is a polynomial function f of the state variables, where f may be nonlinear.
The method derives a series of simplified expressions from f to use in the formulation of
system properties.

SRI has developed a prototype mechanization of hybrid abstraction that is implemented
in the open source tool called Hybrid SAL, which in turn is an extension of the model

9 of 17

checking tool SAL [32]. Given this preliminary implementation, it is possible, on a
limited scale, to design and validate models used in model-based diagnosis. A potential
limitation, however, is deduction involving nonlinear arithmetic. Ongoing improvements
in this area and other features of the Hybrid SAL automation are needed to reduce hybrid
abstraction to practice.

To assess the potential for hybrid analysis methods, a small modeling study was
performed by NASA postdoctoral researcher Arturo Tejada [33]. The goal was to
examine an emerging fault detection technology based on distributed Bragg fiber-optic
strain sensors. Such sensors can be embedded in aircraft wings to continuously monitor
surface strain during flight. Strain information and spectral analysis techniques can then
be used to detect faults due to changes in the wing’s physical parameters or to detect the
presence of incipient cracks.

Working from the physical principles behind the modeling of vibrating structures such as
cantilever beams (the natural model of a wing), Tejada reviewed two different classes of
fault detection techniques and proposed a particular detection method for cracks in wings.
The model requires an ability to handle fourth-order partial differential equations that are
beyond the reach of current state-of-the-art analysis methods for hybrid system
verification. The new work underway in the IVHM project will address this current
limitation.

Hybrid Systems Adverse Events
Adverse events in the class of hybrid systems described here generally take the form of
logical or mathematical flaws in models, algorithms and software implementations. A
flaw in a system model or software component is a design defect rather than a
degradation fault or a physical-failure fault. While software faults usually are introduced
early in the life cycle, a latent fault might not be manifested until the component is
operational. Conditions encountered during operation determine whether faulty software
will be invoked, and whether its effects are immediate or delayed.

Current industry practice for managing software faults is based on the use of two broad
categories of techniques. The first can be called static analysis methods, which include
manual reviews and semi-automated checking of requirements, designs and software
code. The methods are termed static analysis because the code is not executed. This is in
contrast to the second category, dynamic analysis methods, which make extensive use of
testing and simulation by executing the code which may be instrumented for monitoring
and analysis. Techniques based on formal methods, of which hybrid abstraction is an
instance, generally fall into the static analysis category. Research and development
results are starting to make their way into industrial practice, bringing considerably more
mathematical rigor into verification practices.

Hybrid Systems Analysis Baseline Datasets
Hybrid system modeling and analysis techniques have been pursued actively by
researchers since the mid 1990s. Owing to the inherent difficulty of this domain, progress
has been slower than that of other types of formal and analytical methods. One limitation

10 of 17

of the field is the intractability of automated deduction on the domain of nonlinear real
arithmetic.

Reasoning over nonlinear inequalities is key to effective analysis of hybrid systems.
Existing methods suffer from incompleteness or poor performance. Constructing the
transition relation of a model involves proving or disproving formulas that are Boolean
combinations of polynomial equalities and inequalities. The full first-order theory of the
reals is decidable but it has a double exponential lower bound. The classical decision
procedure for this theory is Collins's cylindrical algebraic decomposition (CAD)
algorithm [34], but it is very complex and computationally expensive. Available
implementations of this decision procedure can solve only very small problems.

SRI and its collaborators have developed a new algorithm called RAHD (Real Algebra in
High Dimensions) that promises to be sound, complete and effective. It combines many
existing algorithms so subproblems are solved using the cheapest technique. A heavily
modified form of the CAD algorithm is a key element of RAHD, and the existing CAD
implementation QEPCAD-B [35] is also incorporated as a back-end solver. SRI has
created a prototype implementation of the RAHD algorithm, which is now undergoing
test, evaluation, and refinement. After it is integrated with Hybrid SAL, the overall
effectiveness of the hybrid abstraction technique will be enhanced.

Hybrid Systems Analysis Relationship to Aviation Safety
Hybrid systems analysis will be vital in the application of compositional verification
techniques for verification of complex and modular IVHM systems. The analytical
methods and tools under development will provide effective means to assess the
correctness and safety of complex IVHM and fault-tolerant systems in vehicles that will
operate in the Next Generation Air Transportation System. These analytical techniques
also will contribute to increased confidence in the correctness of vehicle software,
thereby enabling increased air-traffic efficiency while maintaining safety.

By taking the theoretical developments of hybrid abstraction and integrating them with a
set of existing, SRI-maintained tools, this new analytical method will become available to
all segments of the aviation community. Engineers who choose to create hybrid models
can make use of this capability to verify system properties rigorously and do so at an
early stage in the life cycle.

Hybrid Systems Analysis Performance Required
As with many analytical methods, verification of hybrid systems lacks established
performance requirements. Moreover, the hybrid abstraction technique is too new to
have generated any significant performance data. Given that implementations of these
techniques typically are used in the context of modeling or engineering tools, acceptable
performance often is dictated by the nature and use of the tools. Interactive tools, for
example, require response times in seconds or minutes to be acceptable to a human user.
Batch-oriented tools, however, might have the luxury of longer execution times that can
run into hours.

11 of 17

For hybrid systems, one crude measure of performance is occasionally mentioned,
namely, the number of continuous (real-valued) variables that the analysis methods can
handle. When a hybrid system model with more than this number of continuous variables
is attempted, the execution time quickly becomes excessive. In the case of hybrid system
techniques based on the use of reachability analysis, the limit is typically five or six
continuous variables. In contrast, the hybrid abstraction technique has shown tractability
when the models contain 15 or more continuous variables. With ongoing developments in
decision procedures for real arithmetic, such as RAHD, the outlook is for even more
improvement.

Prioritization

There are numerous verification, validation, and certification challenges that must be
addressed in the deployment of advanced IVHM technologies. These challenges are not
unique to IVHM. Adaptive controls [36, 37], uninhabited autonomous air vehicles [38],
and development of the next generation air transportation system [39] are some examples
of emerging systems that will necessitate increased levels of automation that rely upon
advanced technologies. We propose prioritizing candidate enabling verification and
validation capabilities based upon relevance to system-level dependability cases,
relevance to the specific needs of IVHM technology, and relevance to broader aviation
safety verification and validation needs. These considerations are outlined in table 2.

Considerations for Prioritizing Integrity Assurance Research
Criteria	 Notes

Relevance to IVHM
Specific IVHM advanced information Examples include model-based diagnosis,
processing technology under consideration feature extraction and pattern analysis, etc.
Specific IVHM systems that employ embedded Examples include health state monitoring,
computation integrated with physical damage mitigating control, condition-based
processes. maintenance
Relevance to system-level dependability cases
Alignment of technology with identifying

Examples include instrumentation concepts,inconsistencies between observed behavior runtime monitoring, and architectural
and the explicit claims in the dependability enforcement mechanisms.case
Relevance to broader aviation safety V&V

Safe composition of rigorously verified systems Tools, techniques, and methods that are

and sub-systems applicable to verification, validation, and
certification of complex dynamic systems

Existing air traffic and vehicle health
management Scalable techniques applicable to increasing

levels of automation and decreasing ability ofDeveloping air traffic and vehicle health
management flight and ground crew to provide safety

marginsFuture generation air traffic and vehicle health
management
Alignment of technology development with Examples include RTCA, SAE, and
national and international committees, recommendations from the National
standard-setting organizations, and technical Academies and the President's Council of
working groups Advisors on Science and Technology

Table 2: Possible prioritization criteria for enabling capabilities

12 of 17

The introduction of software health management as a research topic suggests a viewpoint
for prioritizing enabling V&V research, and reinforces the relevance of the current
research activities underway within the IVHM project. The software health management
effort of the IVHM project specifically seeks to define a framework for identifying
inconsistencies between observed behavior and the explicit claims in the dependability
case. As noted earlier, there currently exist examples of technologies that may be
considered software health management techniques. But unique to NASA’s IVHM
approach is the provision of a framework for proving system safety in the context of a
system that is instrumented in such a way as to examine whether inconsistencies exist
between the explicit claims and assumptions under which the system design was deemed
safe and the actual behavior of the fielded system. Once a framework for observing
inconsistencies is established, further investigation into diagnosis, prognosis, and
mitigation approaches will be possible. Even though NASA’s IVHM research into
software health management has only just begun, there are clearly areas of research that
will be enabling to this framework. Areas currently being pursued in NASA’s IVHM
project include the composing of components that certifiably satisfies global
requirements [40], rigorous checking of system requirements at runtime [20],
compositional verification and assume-guarantee [7], and tools for verification of system
models that are comprised of both discrete and continuous variables [29]. While these
enabling capabilities provide a solid basis to support the software health management
framework, inevitably other research opportunities will be presented as the software
health management work proceeds. For example, research into new architecture
principles is needed that will ensure that observed inconsistencies are due exclusively to
either faults in the software design or flaws in the safety argument. These principles
would be shaped from architectural requirements derived from emerging software health
management frameworks.

To effect a comprehensive estimation of vehicle-level health state, integrated health
management necessitates that there be an exchange of data and information among
distributed systems, subsystems, and components that are highly networked. Because
IVHM systems will be introduced at every level of this hierarchy, and will likely share
common computing resources within an Integrated Modular Avionics (IMA) architecture
framework, there is a pressing need to address verification and validation capabilities that
support modular certification concepts [28]. NASA’s IVHM work in compositional
verification and architectural enforcement are supportive of these modular certification
concepts.

IVHM systems are comprised of embedded computers that incorporate networks of
sensor modules for acquiring physical parameters and networks of actuator modules for
control, optimization, and mitigation. These are, in effect, next generation cyber-physical
systems (CPS) [41] that will require new tools and methods for verification and
validation of the complex interactions between modules [27]. IVHM is conducting
research into developing hybrid abstraction tools that will support the analysis of systems
that exhibit both discrete and continuous behavior as is typically found in the cyber-
physical realm.

13 of 17

Recognizing that the V&V challenges associated with deploying systems incorporating
advanced technology is not unique to IVHM, relevance to broader aviation safety
verification and validation needs should also be a factor when prioritizing research focus
areas. Zemrowski [42] examines the engineering challenges faced by NextGen in
order to maintain safety while increasing capacity, noting that

“Reliability and availability will be even more important than they are
in today’s most critical applications. Because of the safety criticality,
special software design techniques may be required to be able to
use certified operating systems and be able to partition software so
that uncertified software does not adversely affect critical routines”.

Furthermore, relevance of NASA’s IVHM verification and validation research initiatives
to national and international standard-setting organizations and technical working groups
is also an important consideration for portfolio prioritization. The IVHM project’s
Technical Plan [1] calls out the need for coordination across the broader research
community, and the coordination with standard-setting bodies and technical working
groups is particularly significant to verification and validation as many requirements will
be driven by the system of rules and regulations that govern the use of advanced
technology in the National Airspace System.

Conclusion

NASA’s Integrated Vehicle Health Management project is conducting research aimed at
enabling capabilities to support the verification and validation of IVHM technologies.
While these enabling capabilities are necessary for fielding IVHM systems, they are
certainly not unique to IVHM. Technologies that involve dynamic and non-deterministic
algorithms for pattern recognition, feature extraction, and fusion (to name a few) are
germane to IVHM as well numerous emerging applications such as adaptive flight
controls, autonomous air vehicles, and next generation air transportation systems.
Currently NASA’s IVHM project is focusing on compositional verification for providing
strong guarantees that the verification of a system or sub-system can take advantage of
the verification of individual components, hybrid systems analysis for providing analysis
capability of systems comprised of both continuous and discrete behavior, and a new
IVHM concept referred to as software health management which seeks to address
software-related faults in the context of system-level dependability cases. A key
consideration in software health management is the employment of architecturally
enforced partitioning mechanisms to ensure that system and subsystem faults are
contained in a manner that provides unambiguous traceability to faulty software behavior.
Another consideration is the management of compositional verification, which is
centered on assume-guarantee reasoning, in the presence of violations of these
assumptions, which is the central philosophy of software health management. The
selection and priority of these focus areas is based upon relevance to the specific needs of
the IVHM project, impact on software health management, and applicability to broader
aviation safety needs. Software health management is a new research endeavor that will
undoubtedly introduce new research needs as the work progresses.

14 of 17

References

1. “Integrated Vehicle Health Management Technical Plan, Version 2.01,” National
Aeronautics and Space Administration, August 14, 2008
<http://www.aeronautics.nasa.gov/nra_pdf/ivhm_tech_plan_c 1 .pdf>

2. Lichtenwalner, P.F., White, E.V., and Baumann, E.W., "Information processing for
aerospace structural health monitoring," SPIE Vol. 3326, Pg. 406-417 1998.

3. RTCA/DO- 17 8B, “Software Considerations in Airborne Systems and Equipment
Certification,” December 1992

4. Jacklin, S., Schumann, J., Gupta, P., Lowry, M., Bosworth, J., Zavala, E.,
Hayhurst, K., Belcastro, Celeste, and Belcastro, Christine, “Verification, Validation,
and Certification Challenges for Adaptive Flight-Critical Control System Software,”
AIAA-2004-5258, AIAA Guidance, Navigation, and Control Conference and Exhibit,
Providence, Rhode Island, Aug. 16-19, 2004

5. Jones, C. B., “Tentative steps toward a development method for interfering
programs.” ACM Trans. on Prog. Lang. and Sys., 5(4):596–619, Oct. 1983.

6. Pnueli, A., “In transition from global to modular temporal reasoning about
programs,” In Logics and models of concurrent systems, pages 123–144, 1985.

7. Giannakopoulou, D., Pasareanu, C., and Cobleigh, J.M., "Assume-guarantee
Verification of Source Code with Design-Level Assumptions," ICSE'2004.

8. Pasareanu, C.S., Giannakopoulou, D., Gheorghiu, M., Cobleigh, J.M., and Barringer,
H. “Learning to Divide and Conquer: Applying the L* Algorithm to Automate
Assume-Guarantee Reasoning”. Springer Journal of Formal methods in System
Design, special issue on Compositional Reasoning Volume 32, Number 3, June 2008.

9. Giannakopoulou, D., Pasareanu, C., and Barringer, H. “Assumption Generation for
Software Component Verification”, in Proc. of the 17th IEEE International
Conference on Automated Software Engineering (ASE 2002). September 2002,
Edinburgh, UK. (ACM distinguished paper award)

10. Cobleigh, J.M., Giannakopoulou, D., and Pasareanu, C.S. “Learning Assumptions for
Compositional Verification”, in Proc. of the 9th International Conference for the
Construction and Analysis of Systems (TACAS 2003). April 2003, Warsaw, Poland.
Springer, LNCS 2619.

11. Giannakopoulou, D., and Pasareanu, C.S. “Interface Generation and Compositional
Verification in JavaPathfinder”, in Proceedings of FASE 2009, York, UK, March
2009

12. Chaki, S., Clarke, E., Giannakopoulou, D., and Pasareanu, C., “Abstraction and
assume-guarantee reasoning for automated software verification,” RIACS TR 05.02,
October 2004.

13. Jackson, D., Thomas, M., and Millett, L. I., Eds. “Software for Dependable Systems:
Sufficient Evidence?” National Academies Press, May 2007.

14. Avizienis, A., Laprie, J., Randell, B., and Landwehr, C., “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions On
Dependable and Secure Computing, Vol. 1, No. 1, pp. 11—33, January-March 2004.

15. Lions, et al., “Ariane 5 Flight 501 Failure, Report by the Inquiry Board,” July 1996.
(retrieved from http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

15 of 17

16. Maxion, R.A., and Olszewski, R.T., “Improving software robustness with
dependability cases,” Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-
Eighth Annual International Symposium on 23-25 June 1998 Page(s):346 – 355

17. Bishop, P.G., and Bloomfield, Robin E., ‘‘The SHIP Safety Case Approach,’’
SafeComp95, Belgirate, Italy 11-13 October 1995, pp 437-451, published by Springer
(ed. Gerd Rabe)

18. Avizienis, A., Laprie, J., and Randell, B., “Fundamental Concepts of Computer
System Dependability,” IARP/IEEE-RAS Workshop on Robot Dependability:
Technological Challenge of Dependable Robots in Human Environments, Seoul,
Korea, May 21-22, 2001

19. Sha, L., “Using Simplicity to Control Complexity,” IEEE Software, July/August
2001.

20. Chen, F., and Rosu, G., “MOP: An efficient and generic runtime verification
framework,” Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications 2007, pp 569 – 588

21. Feather, M. S., Fickas, S., van Lamsweerde, A., and Ponsard, C., “Reconciling
System Requirements and Runtime Behavior,” Proceedings of the 9th International
Workshop on Software Specification and Design, April 1998

22. Goldberg, A., and Horvath, G., “Software Fault Protection with ARINC 653,” IEEE
Aerospace Conference, March 2007.

23. Castelli, V., Harper, R.E., Heidelberger, P., Hunter, S. W., Trivedi, K. S.,
Vaidyanathan, K., and Zeggert, W. P., “Proactive Management of Software Aging,”
IBM J. Res. & Dev., Vol. 45, No. 2, March 2001.

24. Parnas, D. L., “Software Aging,” Proceedings of the 16th International Conference on
Software Engineering, pp. 279—287, 1994.

25. Grottke, M., and Trivedi, K., “Fighting Bugs: Remove, Retry, Replicate, and
Rejuvenate,” IEEE Computer, pp. 107 – 109, February 2007.

26. Nikora, A., “Classifying Software Faults to Improve Fault Detection Effectiveness,”
NASA OSMA Software Assurance Symposium, September 2007. (retrieved from
http://sarpresults.ivv.nasa.gov/ViewResearch/130.jsp)

27. Winter, D. C., Statement of Boeing’s Perspective on Cyber-Physical Systems
Research, Hearing on Networking and Information Technology Research and
Development Program, Committee on Science and Technology, U. S. House of
Representatives, July 31, 2008
http://democrats.science.house.gov/Media/File/Commdocs/hearings/2008/Full/31july/
Winter_Testimony.pdf

28. Rushby, J., “Modular Certification,” NASA/CR-2002-212130 December 2002
29. Tiwari, A., and Khanna, G., “Series of abstractions for hybrid automata,” In C. J.

Tomlin and M. R. Greenstreet, editors, Hybrid Systems: Computation and Control
HSCC, volume 2289 of LNCS, pages 465–478. Springer, March 2002.

30. Tiwari, A., “An algebraic approach for the unsatisfiability of nonlinear constraints,”
In L. Ong, editor, Computer Science Logic, 14th Annual Conf., CSL 2005, volume
3634 of LNCS, pages 248–262. Springer, August 2005.

31. Rodriguez-Carbonell, E., and Tiwari A., “Generating polynomial invariants for
hybrid systems,” In M. Morari and L. Thiele, editors, Hybrid Systems: Computation

16 of 17

and Control, HSCC 2005, volume 3414 of LNCS, pages 590–605. Springer, March
2005.

32. Leonardo de Moura, Owre S., Rueß H., Rushby J., Shankar N., Sorea M., and Tiwari
A., “SAL 2,” In Rajeev Alur and Doron Peled, editors, Computer-Aided Verification,
CAV ’2004, volume 3114 of Lecture Notes in Computer Science, pages 496–500,
Boston, MA, July 2004. Springer-Verlag. SAL home page: http://sal.csl.sri.com/.

33. Tejada, A., “A Mode-Shape-Based Fault Detection Methodology for Cantilever
Beams,” NASA/CR-2009-215721, May 2009.

34. Collins, G. E., “Quantifier elimination for the elementary theory of real closed fields
by cylindrical algebraic decomposition,” In Proceedings Second GI Conference on
Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer
Science, pages 134–183. Springer-Verlag, 1975.

35. Hong, H., Quantifier elimination in elementary algebra and geometry by partial
cylindrical algebraic decomposition (version 13).
http://www.gwgd.de/˜cais/systeme/scalib, 1995.

36. Rushby, J., “How Do We Certify for the Unexpected?” AIAA 2008-6799, AIAA
Guidance, Navigation, and Control Conference August 2008, Honolulu, Hawaii

37. Jacklin, S. A., “Closing the Certification Gaps in Adaptive Flight Control Software,”
AIAA Guidance, Navigation, and Control Conference, Honolulu, HI, August 2008

38. Halski, D., Barhorst, J., Swearingen, K., and Urnes, J., “Software V&V Challenges
for Uninhabited Autonomous Air Vehicles,” AIAA-2004-5255, AIAA Guidance,
Navigation, and Control Conference and Exhibit, Providence, Rhode Island, Aug. 16-
19, 2004

39. OIG Statement CC-2008-118, “Status of FAA’s Efforts To Develop the Next
Generation Air Transportation System,” September 11, 2008
<http://www.oig.dot.gov>

40. Manolios, P., “Automating Component-Based System Assembly,” AIAA 2008-6803
AIAA Guidance, Navigation and Control Conference and Exhibit 18 - 21 August
2008, Honolulu, Hawaii

41. Lee, E. A., “Cyber Physical Systems: Design Challenges,” 11 th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing, May 2008

42. Zemrowski, K. M., “Impacts of Increasing Reliance on Automation in Air Traffic
Control Systems,” SysCon 2008 – IEEE International Systems Conference, Montreal,
CA, April 7-10, 2008

17 of 17

REPORT DOCUMENTATION PAGE
OForm Approved

MB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

01-06 - 2009 Technical Memorandum
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Baseline Assessment and Prioritization Framework for IVHM Integrity
Assurance Enabling Capabilities 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Cooper, Eric G.; Di Vito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.
5e. TASK NUMBER

I

5f. WORK UNIT NUMBER

645846.02.07.07.15.02
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-2199
L-19688

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2009-215764
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous
conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation,
prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation
challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation
subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying
these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new
verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance
capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper
describes the research focused on enabling capabilities for verification and validation underway within NASA’s Integrated Vehicle Health Management
project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

15. SUBJECT TERMS

Software health management; Compositional verification; Hybrid systems analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT

PA
OF
PAGESGES Help Desk email: hel	 sti.nasa. ovp	 (p@	 g)a. REPORT b. ABSTRACT c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

U U U UU 22 (443) 757-5802
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

